Pular para o conteúdo principal

Questão 36 - Tipo 001 - Escriturário (BB) - FCC (2011)

Certa máquina gasta 20 segundos para cortar uma folha de papelão de formato retangular em 6 pedaços iguais. Assim sendo, quantos segundos essa mesma máquina gastaria para cortar em 10 pedaços iguais outra folha igual à primeira se, em ambas as folhas, todos os cortes devem ter o mesmo comprimento? 

(A) 36.             (B) 35,5.             (C) 34.             (D) 33,3.             (E) 32.  

SOLUÇÃO

Considere a figura abaixo a representação de um folha de papelão cortada em 6 pedaços iguais

As linhas vermelhas representam os cortes que a máquina deu na folha. Então, observe que, embora a folha tenha sido divida em 6 partes, a máquina precisou fazer 5 cortes.

Agora, vamos observa a figura a seguir que representa uma folha de papelão, com as mesmas dimensões que a anterior, mas dividida em 10 pedaços iguais.

Desta vez, para dividir a folha em 10 partes, a máquina precisou fazer 9 cortes.

Precisamos considerar o número de cortes que a máquina fez, ao invés do número de pedaços que a folhas de papelão foram divididas. Assim, se o número de cortes aumentar, o tempo para realizar os cortes também aumenta. Portanto, o número de cortes e o tempo, em segundos, são grandezas diretamente proporcionais.

$$\begin{array}{c|c}\hline \text{Cortes} & \text{Tempo} \\ \hline 5 & 20 \\  9 & x \\ \hline\end{array}\Rightarrow \dfrac{5}{9}==\dfrac{20}{x}\Rightarrow x=\dfrac{9\cdot 20}{5}=36$$

Alternativa A

O que achou da solução? Ficou dúvidas? Comenta aí!

Comentários

Postagens mais visitadas deste blog

IBGE 2007

Se todo A é B e nenhum B é C, é possível concluir, corretamente, que: a) nenhum B é A; b) nenhum A é C; c) todo A é C; d) todo C é B; e) todo B é A SOLUÇÃO Para resolver esta questão vamos considerar que A, B e C são conjunto e será representado na forma de diagrama, como na figura abaixo: A proposição "Todo A é B",quer dizer que A é subconjunto de B, logo, o conjunto A (vermelho) está dentro de B. A outra proposição "nenhum B é C", quer dizer que o que não pertence ao conjunto B (azul) pertence a C. Analisando a alternativa a)nenhum B é A: Esta proposição é falsa. Observando a figura, haverá algum B que é A, a parte vermelha pertence tanto a A como B. b) nenhum A é C: Esta proposição é verdadeira, pois A é subconjunto de B e, consequentemente, A não pode ser C. c) todo A é C: Esta proposição é falsa, pois A não está contido em C. d) todo C é B: Esta proposição é falsa, pois C é todo elemento que não pertence a B e) todo B é A: Esta proposição é

ENEM 2009 - Caderno Azul - Questão 136

Dados da Associação Nacional de Empresas de Transportes Urbanos (ANTU) mostram que o número de passageiros transportados mensalmente nas principais regiões metropolitanas do país vem caindo sistematicamente. Eram 476,7 milhões de passageiros em 1995, e esse número caiu para 321,9 milhões em abril de 2001. Nesse período, o tamanho da frota de veículos mudou pouco, tendo no final de 2008 praticamente o mesmo tamanho que tinha em 2001. O gráfico a seguir mostra um índice de produtividade utilizado pelas empresas do setor, que é a razão entre o total de passageiros transportados por dia e o tamanho da frota de veículos. Disponível em: http://www.ntu.org.br. Acesso em 16 jul. 2009 (adaptado). Supondo que as frotas totais de veículos naquelas regiões metropolitanas em abril de 2001 e em outubro de 2008 eram do mesmo tamanho, os dados do gráfico permitem inferir que o total de passageiros transportados no mês de outubro de 2008 foi aproximadamente igual a 355 milhões. 400 milhões

Questão 43 - Agente Censitário Administrativo - IBGE - 2017 (Tipo 01-Branca)

Juliana leu 10 livros um após o outro, sem intervalos entre eles. Ela leu o primeiro livro em 2 dias, o segundo em 3 dias, o terceiro em 4 dias, e assim, sucessivamente, até o décimo livro. Ela terminou de ler o primeiro livro em um domingo, e o segundo livro, em uma quarta-feira. Juliana terminou de ler o décimo livro em um(a): (A) domingo; (B) segunda-feira; (C) terça-feira; (D) quarta-feira; (E) sábado. SOLUÇÃO Juliana leu 10 livros, sendo que o primeiro foi lido em dois dias, o segundo em três dias, seguindo assim, ela leu o décimo livro em 11 dias, formando a sequência $$\begin{equation}\label{t}\left(\underset{(a_1)}{2},\underset{(a_2)}{3},\underset{(a_3)}{4},\cdots,\underset{(a_{10})}{11}\right)\end{equation}$$ que é uma P.A. crescente com 10 termos, cujo primeiro termo é $a_1=2$ e a razão é $r=1$. Para saber o dia da semana que ela terminou se de ler o décimo livro, devemos determinar o tempo que Juliana levou para ler todos os livros, para isso, devemos somar os t