João tem 5 processos que devem ser analisados e Arnaldo e Bruno estão disponíveis para esse trabalho. Como Arnaldo é mais experiente, João decidiu dar 3 processos para Arnaldo e 2 para Bruno. O número de maneiras diferentes pelas quais João pode distribuir esses 5 processos entre Arnaldo e Bruno é: (A) 6; (B) 8; (C) 10; (D) 12; (E) 15. SOLUÇÃO Suponhamos que João vai escolher primeiro os 3 processos que dará a Arnaldo e os que restarem ficarão com Bruno. Os 3 primeiros serão escolhidos entre 5 processos e a ordem de escolha não importa, assim, a quantidade de formas de escolher os processos que irão para Arnaldo é uma combinação de 5 tomados 3 a 3 $$C_{5,3}=\frac{5!}{(5-3)\cdot 3!}=10$$ Como restaram 2 processos, onde a ordem também não importa, então , só há uma única forma de escolher os processos de Bruno. As quantidades de maneiras de escolher os processos de Arnaldo e Bruno são independentes, assim, o total de formas de distribuir os 5 processos entre Arnaldo e Brun...
Dicas e resolução de questões, referentes a Matemática e Raciocinio Lógico.