O departamento de trânsito de uma dada localidade decidiu recentemente identificar todas as bicicletas da cidade por placas, de tal forma que a primeira letra da placa identifique o bairro onde o proprietário da bicicleta reside (a cada bairro é atribuída uma única letra, e bairros diferentes possuem letras diferentes). Também foi decidido que o último dígito numérico da placa é um dígito verificador igual ao dígito das unidades do número formado pela soma dos dígitos anteriores da placa. Se a placa for da forma LLNNN em que ‘L’ representa uma letra maiúscula do alfabeto de 26 letras, e ‘N’ é um dígito (ou seja, um número natural variando no intervalo 0N9), se a localidade possui apenas 8 bairros, então o maior número de bicicletas que podem ser identificadas, de tal forma que, obedecendo às determinações anteriores, a cada bicicleta corresponda uma placa única e diferente de todas as demais, é de: A) 67.600 placas. B) 20.800 placas. C) 56.300 placas. D) 58.500 placas. E) 10.400 p...
Dicas e resolução de questões, referentes a Matemática e Raciocinio Lógico.